Complex Simplicity: The "Easy Button" Approach to Measurement Science

Tom Linz

Department of Chemistry Wayne State University

Chemistry

Biomedical Opportunities

Biopharmaceuticals

Clinical Diagnostics

Liposomal Nucleic Acid Drugs

Protein Biomarkers miRNA Biomarkers

Analysis Performance Criteria

- Broadly applicable
- Inexpensive
- Rapid
- User-friendly
- High sensitivity
- High selectivity
- Low sample volume

Gel Electrophoresis

- Determines the chemical purity of biological samples
 - Identify which analytes are present
- Slab gels have limited analytical performance
 - LOD and resolution are insufficient

Gel Electrophoresis

- Determines the chemical purity of biological samples
 - Identify which analytes are present
- Slab gels have limited analytical performance
 - LOD and resolution are insufficient
- Slab gel analysis sacrifices biological information
 - SDS denatures proteins prior to mass measurement
 - Cannot analyze particles

Thermal Gels

- Thermally responsive Pluronic polymers
 - Polymer micelles pack more densely at warm temperatures
 - Undergo a phase change
 - Viscosity is tunable with temperature

Adapted from *J. Pharm. Pharm. Sci.* 2006, *9*, 339-358

Thermal Gels

- Thermally responsive Pluronic polymers
 - Polymer micelles pack more densely at warm temperatures
 - Undergo a phase change
 - Viscosity is tunable with temperature

Microfluidic Device Operation

- Soft lithography used to fabricate PDMS microfluidic devices
 - 100 x 20 μm channels
- Sample is directly cast into thermal gel
- Images acquired using an epifluorescence microscope
- Temperature controller integrated into microscope stage

Microfluidic Separations

Gated Electrophoresis

Isotachophoresis

Thermal Gel Electrophoresis (TGE)

- Use simple single-channel
 microfluidic devices
 - Cast sample in thermal gel
 - Load thermal gel throughout channel
- Inline preconcentration and separation
 - No need to direct multiple fluid flows
 - No sample injection
 - No precise voltage switching
 - No user intervention

miRNA Analysis

- MicroRNAs silence genes
 - Prevent protein translation from mRNA
 - Misregulation causes pathogenesis
 - Biomarkers for diseases
 - Being developed into therapeutics

- miRNAs composed of ~22 nucleotides
 - Same-length sequences do not separate in gel electrophoresis
 - Cannot distinguish different species

Multiplexed miRNA TGE

M.A. Cornejo, T.H. Linz, Anal. Chem. 2022, 94, 14, 5674–5681

Multiplexed miRNA TGE

Second Generation TGE Devices

LOD \approx 10 pM

Native Protein Analysis

- Proteins must remain correctly folded to exhibit proper bioactivity
 - Either inactive or harmful if misfolded or aggregated

- Proteins must have proper multimeric units or complexes associated
 - Post-translation modifications must be present

Native Protein TGE

Fluorescent ovalbumin used as a model protein

 Multiple folding and phosphorylation variants

S.H. Peli Thanthri, C.L. Ward, M.A. Cornejo, T.H. Linz, *Anal. Chem.* 2020, 92, 6741-6747

Analysis Performance Criteria

- Broadly applicable
- Inexpensive
- Rapid
- User-friendly
- High sensitivity
- High selectivity
- Low sample volume

Vesicle Analysis

- Vesicles are lipid nanoparticles that contain biomolecules
- Liposomes are drug delivery vehicles that protect internal cargo
- Extracellular vesicles are secreted by cells for communication
- Need to interrogate intravesicular biomolecules

Joule Heating Barriers

Cell Enrichment

HEK 293 cells Stage = 10 °C

10x speed

M.A. Cornejo, T.H. Linz, *Electrophoresis*, 2021, 42, 1238-1246

Cell Enrichment

M.A. Cornejo, T.H. Linz, *Electrophoresis*, 2021, 42, 1238-1246

Conclusions

- Thermal gel electrophoresis provides inline enrichment and separation
 - Analyze proteins, nucleic acids, and vesicles in a user-friendly analysis
- Digital quantitative PCR provides single-molecule sensitivity and a large dynamic range
 - Quantify vesicles AND intravesicular biomolecules in a single analysis
 - Measure extracellular biomolecules with good LODs

Acknowledgements

• Linz Lab members

- Bailey McCarthy Riley
- Shakila Peli Thanthri
- Mario Cornejo
- Нао Маі
- Courtney Cunningham
- Brice Vanness

- Funding
 - NIH R21GM137278
 - NSF 2046487
 - SACP Starter Grant
 - Wayne State University

National Institute of General Medical Sciences

Microfabrication

