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INTRODUCTION

• Incentives for chemical process control

Raw Materials Products
Chemical Process

Safety
Environmental

Regulations

Production

Specifications

Economics

• Need for continuous monitoring and external intervention (process control)

• Objectives of a process control system

⋄ Ensuring stability of the process

⋄ Suppressing the in�uence of external disturbances

⋄ Optimizing process performance



FEEDBACK CONTROL LOOP
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• How a feedback control loop (closed-loop system) works:

⋄ A variable describing the condition of a process (e.g., temperature, pressure,

species concentration; known as an output) is measured by a sensor

⋄ The error between the measured output value and the desired value of this

output (set-point) is calculated and fed to the controller

⋄ The controller computes a value of the manipulated input to the process to

reduce the error

⋄ A control actuator (typically a valve) is used to apply the manipulated input

value to the process



CLASSICAL CONTROL
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• Classical control: single-input/single-output (SISO) control design

⋄ Proportional-integral-derivative (PID) control (error e(t))

▷ Error re�ects di�erence between measured output and set-point

⋄ Input/control action u(t)

u(t) = Kce(t)︸ ︷︷ ︸
P

+
1

τI

∫ t

0

e(τ)dτ︸ ︷︷ ︸
I

+ τD
de(t)

dt︸ ︷︷ ︸
D

⋄ Kc, τI , τD: scalar values that can be picked (tuned)



ADVANCED MODEL-BASED PROCESS CONTROL

• Advanced process control utilizes a process dynamic model explicitly in the

controller design

⋄ A mathematical process model is developed:

▷ Constructed from �rst-principles

▷ Identi�ed from input-output process data

⋄ The model describes the process dynamics (variation of the process state

variables in time due to disturbances, inputs, and interactions between

variables)

⋄ Controllers are synthesized based on the process model

• Advantages of model-based control

⋄ Possibility of improved closed-loop performance

⋄ Model accounts for inherent process characteristics (e.g., nonlinear behavior,

multivariable interactions)

⋄ Characterization of limitations on achievable closed-loop stability, performance

and robustness



NONLINEAR MODEL-BASED PROCESS CONTROL

• Example: continuous stirred tank reactor (CSTR)

CA0, T0

Q

CA, T

CA, T

Q

• Model: system of nonlinear ordinary di�erential equations (ODEs)

dT

dt
=

F

Vr
(T0 − T ) +

(−∆H)

ρCp
k0e

−E/RTCA +
Q

ρCpVr

dCA

dt
=

F

Vr
(CA0 − CA)− k0e

−E/RTCA

⇒
x =

x1

x2

 =

 T − Ts

CA − CAs

 , ẋ =
dx

dt

u = Q−Qs, w = CA0 − CA0s



NONLINEAR MODEL-BASED PROCESS CONTROL

• Example: continuous stirred tank reactor (CSTR)

CA0, T0

Q

CA, T

CA, T

Q

• Model: system of nonlinear ordinary di�erential equations (ODEs)

ẋ = f(x, u, w)

• Techniques for nonlinear controller design for driving the process state to the

operating steady-state

⋄ Lyapunov-based control ⋄ Model predictive control



NONLINEAR PROCESS SYSTEMS
• State-space description

ẋ = f(x, u, w)

⋄ x ∈ X ⊂ Rn is the state, u ∈ U ⊂ Rm is the manipulated input, w ∈W ⊂ Rl is

the disturbance, f is a vector function

• Explicit nonlinear feedback control law: u = h(x)

⋄ Control design technique: Lyapunov-based control
(Y. Lin and E.D. Sontag, SCL, 1991; H. Khalil, Prentice Hall, 2002; P. D.

Christo�des and N. H. El-Farra, Springer-Verlag, 2005)

⋄ Renders the origin (steady-state) asymptotically

stable

⋄ There exists a Lyapunov function V which satis�es

V̇ =
∂V (x)

∂x
f(x, h(x), 0) < 0, ∀ x ∈ D V : energy of a physical system

D

Ωρ

⋄ Typically, V (x) = xTPx (quadratic) and Ωρ ⊆ D is a level set of V where

state constraints are met (i.e., Ωρ := {x : V (x) ≤ ρ})
⋄ u = h(x) possesses a degree of robustness to disturbances and uncertainty

• Performance considerations and constraints are not directly/explicitly taken into

account



MODEL PREDICTIVE CONTROL

• Model predictive control (MPC)

min
u∈S(∆)

∫ tk+N

tk

lT (x̃(τ), u(τ)) dτ

s.t. ˙̃x(t) = f(x̃(t), u(t), 0)

x̃(tk) = x(tk)

u(t) ∈ U, x̃(t) ∈ X, ∀ t ∈ [tk, tk+N )

• Quadratic tracking stage cost:

lT (x, u) = xTQx+ uTRu

⋄ Q, R are positive de�nite matrices

• Solve the optimization problem every

∆ time units (sampling period)

⋄ At each sampling time tk

Past Future

Steady-state

x(tk)
x̃

Predicted state trajectory

Manipulated input trajectory

Prediction horizon

. . .tk tk+1 tk+N

• Solution is a piecewise-constant input

trajectory

⋄ Each piece is held constant for a

period ∆

⋄ Prediction horizon N



MODEL PREDICTIVE CONTROL
• Model predictive control (MPC)

min
u∈S(∆)

∫ tk+N

tk

[
x̃TQx̃+ uTRu

]
dτ

s.t. ˙̃x(t) = f(x̃(t), u(t), 0)

x̃(tk) = x(tk)

u(t) ∈ U, x̃(t) ∈ X, ∀ t ∈ [tk, tk+N )

• Receding horizon implementation

⋄ Only the �rst piece of the input

trajectory is applied

▷ Allows for feedback at every ∆

▷ Accounts for e�ects of

disturbances and plant/model

mismatch on the optimal

solution

⋄ Longer prediction horizon may

improve closed-loop performance

Past Future

Steady-state

x(tk)
x̃

Predicted state trajectory

Manipulated input trajectory

Prediction horizon

. . .tk tk+1 tk+N

• Closed-loop stability is not guaranteed

• Approaches for closed-loop stability

⋄ In�nite/su�ciently long prediction

horizon

⋄ Terminal cost/constraint

⋄ Contractive constraint



NEXT-GENERATION MANUFACTURING

• Next-generation/smart manufacturing

objectives (J. Davis, T. Edgar, J. Porter, J. Bernaden

and M. Sarli, Comput. Chem. Eng., 2012):

⋄ Pro�tability

⋄ Autonomy

⋄ Safety and cybersecurity

Steady-state

Economic Optimization

Real-time Optimization (RTO)

Tracking MPC

lT (x̄, ū) = x̄TQx̄ + ūTRū
x̄ = x− x∗S, ū = u− u∗S

x∗S, u
∗
S

Process Input

Chemical Process

• Example: Moving away from a

hierarchical approach to optimization

and control

⋄ Upper layer:

▷ Determine economically-

optimal steady-state (real-time

optimization (RTO)) (M. L. Darby,

M. Nikolaou, J. Jones and D. Nicholson, JPC,

2011)

⋄ Lower layer:

▷ Feedback control drives the

state of the process to the

optimal steady-state

• Tighter integration of plant operation

and process economic optimization



PROCESS ECONOMICS AND CONTROL
• Traditional Paradigm

Steady-state

Economic Optimization

Real-time Optimization (RTO)

Tracking MPC

lT (x̄, ū) = x̄TQx̄ + ūTRū
x̄ = x− x∗S, ū = u− u∗S

x∗S, u
∗
S

Process Input

Chemical Process

Steady-state operation

• Integration of economic optimization

and process control

• Generalization of MPC

⋄ General (economic) stage cost

Economic MPC

le(x, u)

Process Input

Chemical Process

Dynamic/time-varying operation

• Economic MPC (EMPC) potential use cases:

⋄ Time-varying objective function or constraints (M. Ellis and P. D. Christo�des, AIChE J.,

2013; A. Gopalakrishnan and L. T. Biegler, CACE, 2013)

(M. Ellis, H. Durand and P. D. Christo�des, JPC, 2014)



ECONOMIC MPC FORMULATION

• EMPC formulation:

min
u(·)∈S(∆)

∫ tk+N

tk

le(x̃(τ), u(τ)) dτ

s.t. ˙̃x(t) = f(x̃(t), u(t), 0)

x̃(tk) = x(tk)

u(t) ∈ U, x̃(t) ∈ X,

∀ t ∈ [tk, tk+N )

|u(tj)− u(tj−1)| ≤ ϵd

j = k, . . . , k +N − 1

• Components of EMPC:

⋄ Economic cost function

⋄ Dynamic model

⋄ State feedback measurement

⋄ Input and state magnitude constraints

⋄ Input rate of change constraints

• System equipped with a measure of instantaneous economics le

• Computes control actions that optimize economics

• Accounts for input and state constraints

⋄ Examples: temperature or �ow rate bounds

• Prevents rapid variations in inputs which may damage actuators



LYAPUNOV-BASED ECONOMIC MPC
Boundedness / Time-varying Operation (Mode 1)

(M. Heidarinejad et al., AIChE J., 2012)

min
u(·)∈S(∆)

∫ tk+N

tk

le(x̃(τ), u(τ)) dτ

s.t. ˙̃x(t) = f(x̃(t), u(t), 0)

x̃(tk) = x(tk)

u(t) ∈ U, x̃(t) ∈ X, ∀ t ∈ [tk, tk+N )

|ui(tj)− hi(x̃(tj))| ≤ ϵr, i = 1, . . . ,m,

j = k, . . . , k +N − 1

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N )

if V (x(tk)) ≤ ρe and tk < ts

Ωρ

Ωρe

x(tk)
x(tk+1)

• Provable stability: boundedness of the closed-loop state in Ωρ (Ωρe ⊂ Ωρ)

• Provable feasibility: h(x) meets all state and input constraints



LYAPUNOV-BASED ECONOMIC MPC
Convergence to the Steady-State (Mode 2)

min
u(·)∈S(∆)

∫ tk+N

tk

le(x̃(τ), u(τ)) dτ

s.t. ˙̃x(t) = f(x̃(t), u(t), 0)

x̃(tk) = x(tk)

u(t) ∈ U, x̃(t) ∈ X, ∀ t ∈ [tk, tk+N )

|ui(tj)− hi(x̃(tj))| ≤ ϵr, i = 1, . . . ,m,

j = k, . . . , k +N − 1

∂V (x(tk))

∂x
f(x(tk), u(tk), 0)

≤ ∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0)

if V (x(tk)) > ρe or tk ≥ ts

Ωρ

Ωρe

x(tk)

x(tk+1)

• Compute control actions that decrease the Lyapunov function

• Provable stability: convergence to a small neighborhood of the steady-state



CYBERSECURITY AND PROCESS CONTROL SYSTEMS
• Cyberattacks on control systems seek to impact a physical process and can

impact safety, pro�t, and production rates (A.A. Cárdenas et al., ASIACCS, 2011)

• Do cyberattackers care about attacking control and manufacturing systems?

⋄ 2010: Stuxnet (trellix.com)

▷ Attack on Iranian nuclear facilities

▷ Worm entered systems via USB sticks and spread

▷ Searched for control system software

▷ Ran centrifuges at conditions that cause breakdown

▷ Falsi�ed information to main controller so that there was no indication of a

problem

⋄ December 2015: Part of Ukraine power grid (K. Zetter, Wired, 2016)

▷ Remote manipulation of circuit breakers

▷ Locking real operators out of their accounts

▷ Malicious �rmware prevented operators from un-doing attacks

▷ Turned o� backup power for operators

▷ Telephone denial of service to prevent operators from �nding out about

power outages too quickly



CYBERSECURITY AND PROCESS CONTROL SYSTEMS
• Cyberattacks on control systems seek to impact a physical process and can

impact safety, pro�t, and production rates (A.A. Cárdenas et al., ASIACCS, 2011)

• Do cyberattackers care about attacking control and manufacturing systems?

⋄ 2017: Triton (M. Giles, MIT Technology Review, 2019)

▷ Malware that can prevent safety instrumented systems from activating when

needed

▷ Present on a petrochemical plant in Saudi Arabia

▷ Flaw caused safety systems to act up in a way that revealed it before it

could cause an incident

⋄ 2021: Florida water treatment plant (J. Bergal, PEW, 2021)

▷ Remote user changed sodium hydroxide level to be 100 times higher than it

should have been

▷ Operator saw this and changed it back

⋄ 2021: Colonial Pipeline (W. Turton and K. Mehrotra, Bloomberg, 2021)

▷ Ransom note requesting payment appeared on company computer

▷ Company closed down pipeline due to uncertainty as to whether operational

technology was compromised



CYBERATTACK-RESILIENT CHEMICAL PROCESSES
• Examples of attack types: (N. Tuptuk and S. Hailes, Journal of Manufacturing Systems, 2018)

⋄ Denial of Service: Preventing parts of a network from delivering to others

⋄ Eavesdropping: Attackers quietly learn about the system to prepare for more

active attacks

⋄ False data injection

⋄ Time delay attack: Delay occurs in measurements or control actions

⋄ Data tampering attack: Data can be altered in storage or transmittal

⋄ Replay attack: Correct information from before is sent again

• Cyberattacks on feedback controllers are problematic because they remove

associations between state measurements and inputs

⋄ Undesired inputs u ∈ U can be applied at a given state

⋄ De�es standard notions of feedback control

• Desirable to understand how elements of a control loop can contribute to

detection and handling of attacks

⋄ Goal: Understand how and whether control theory-based cyberattack-handling

can aid in providing security with �exibility for next-generation manufacturing



CYBERATTACK-RESILIENT CHEMICAL PROCESSES: A
NONLINEAR SYSTEMS DEFINITION

(H. Durand, Mathematics, 2018)

• Physical damage from attacks can come from manipulating actuators in a rogue

manner (directly or indirectly)

• Focus on sensor and actuator attacks individually to build toward handling both

at once

• Cyberattack-resilience for state measurement falsi�cation requires:

⋄ There exist no possible input policies given the controllers used and their

implementation strategies such that x(t) /∈ X, for any allowable initial state

x0 ∈ X̄ and w(t) ∈W , t ∈ [0,∞)

ErrorSet-point
Controller Actuator

Input

Disturbances

Output
Process

SensorFalse State
Measurement

+
-

1



DISCOVERING PROPERTIES OF
CYBERATTACK-RESILIENT PROCESS CONTROL

DESIGNS

• The de�nition of cyberattack-resilient control design is non-constructive

• Developing cyberattack-resilient control strategies will require a better

understanding of which designs do and do not work and why

• Explore 2 ideas for cyberattack-resilient controllers:

⋄ Controller implementation incorporating randomness

⋄ Integrating feedback control/open-loop control

• Conclusions:

⋄ Nonlinear systems de�nition of cyberattack-resilience must be met

▷ Hoping the attacker lacks knowledge about the control design is insu�cient

⋄ Other techniques (e.g., process design perspectives or techniques which

combine control with detection) should be investigated



CONTROLLER IMPLEMENTATION INCORPORATING
RANDOMNESS

• Attacks may be designed by reverse engineering known control laws

⋄ Suggests that randomly selecting the controller to be used at a given sampling

time may make cyberattack design more di�cult

⋄ Randomness in control design can only be considered if closed-loop stability is

maintained under normal operation

▷ Closed-loop stability and feasibility guarantees can be made with a

randomized LEMPC implementation strategy

▷ Cyberattack-resiliency is not guaranteed

Ωρ1
Ωρe,1
Ωρ2
Ωρe,2

xa

xb

1

• Implementation strategy:

⋄ Develop np LEMPC's and h1(x)

⋄ At each tk, randomly select one of the

controllers until one is found for which:

▷ x(tk) ∈ Ωρi
, i = 1, . . . , np, for the np− th

LEMPC

▷ x(tk) ∈ Ωρ1
for h1(x)



CHEMICAL PROCESS EXAMPLE
Process Description

• Continuous stirred tank reactor (CSTR) with second-order, exothermic,

irreversible reaction of the form A→ B:
dCA

dt
=
F

V
(CA0 − CA)− k0e

−E
RT C2

A

dT

dt
=
F

V
(T0 − T ) +

−∆H

ρLCp
k0e

−E
RT C2

A +
Q

ρLCpV

• Control objective: regulate the process in an economically optimal time-varying

fashion while maintaining closed-loop stability

⋄ Economic cost: ∫ tk+N

tk

[k0e
− E

RT (τ)CA(τ)
2]dτ

⋄ Manipulated input constraints

0.5 ≤ CA0 ≤ 7.5 kmol/m3 −5.0× 105 ≤ Q ≤ 5.0× 105 kJ / h

⋄ Deviation variables:

x1 = CA − CAs, x2 = T − Ts

⋄ Process model in input-a�ne form ẋ = f̃(x) + gu



CHEMICAL PROCESS EXAMPLE
Lyapunov-Based Controller Design

• Lyapunov-based controller for the inlet concentration: h1,1(x) = 0 kmol/m3

⋄ Lyapunov-based controller for the heat rate input:

▷ Sontag's Formula (Y. Lin and E.D. Sontag, SCL, 1991)

h2,1(x) =

−
Lf̃V1 +

√
Lf̃V

2
1 + Lg2V

4
1

Lg2V1
, if Lg2V1 ̸= 0

0, if Lg2V1 = 0

⋄ A quadratic Lyapunov function of the form V1(x) = xTPx with:

P =

 1200 5

5 0.1


⋄ Stability region ρ1 = 180 (i.e., Ωρ1

= {x ∈ R2 : V1(x) ≤ ρ1})

• Process state initialized at xinit = [−0.4 kmol/m3 20 K]T

• LEMPC parameters: N = 10, ∆ = 0.01 h

• Process simulated with an integration step size of 10−4 h



CHEMICAL PROCESS EXAMPLE
Randomized LEMPC Development

• 6 LEMPC's were designed

⋄ Ωρi ⊆ Ωρ1 , i = 1, . . . , 6

⋄ hi,1 = 0 kmol/m3

⋄ hi,2 designed via

Sontag's control law

⋄ Closed-loop state is

maintained within

Ωρ1
throughout 1

h of operation in

the absence of a

cyberattack
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CHEMICAL PROCESS EXAMPLE
Randomized LEMPC and LEMPC Under a Cyberattack

• Cyberattack with xf = [−0.0521 kmol/m3 − 8.3934 K]T is applied to a single

LEMPC and the randomized LEMPC implementation strategy

• Randomized LEMPC results depend on seed to random number generator

• Randomized LEMPC barely delayed the time until x2 > 55 K compared to the

single LEMPC (0.0142 h)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

50

60

70

80

90

100

Seed Time x2 > 55 (h)

5 0.0231

10 0.0144

15 0.0142

20 0.0323

25 0.0247

30 0.0142

35 0.0142

40 0.0146

45 0.0247

50 0.0142



INTEGRATING FEEDBACK CONTROL/OPEN-LOOP
CONTROL

• Randomized LEMPC implementation strategy could not guarantee that no

problematic inputs could be applied over time (even for steady-state tracking)

• Cyberattack resilience against state measurement falsi�cation could be achieved

for systems with an open-loop stable steady-state

⋄ Applying the steady-state input us bypasses the issues with cyberattacks on

feedback and drives the closed-loop state to the origin

⋄ Loses bene�ts of feedback control

• Cyberattack-resilience de�nition must be met

• Three concepts for utilizing LEMPC to attempt to detect attacks were explored

(H. Durand and M. Wegener, Mathematics, 2020; H. Oyama and H. Durand, AIChE J., 2020)

⋄ LEMPC with random control law modi�cations to probe for cyberattacks

⋄ State feedback LEMPC with an attack detection strategy based on state

predictions at each sampling time

⋄ Output feedback LEMPC (M. Ellis, J. Zhang, J. Liu and P. D. Christo�des, SCL, 2014; L. Lao, M.

Ellis, H. Durand and P. D. Christo�des, AIChE J., 2015) with an attack detection strategy

based on redundant state estimators



OBSERVABILITY ASSUMPTION
• M sets of measurements are continuously available:

yi(t) = ki(x(t)) + vi(t)

⋄ ki is vector-valued function, and vi represents the measurement noise

associated with the measurements yi

⋄ vi ∈ Vi ⊂ Rq
i (|vi| ≤ θv,i), i = 1, . . . ,M

• A deterministic observer exists for each of the

M sets of measurements:

żi = Fi(ϵi, zi, yi)

⋄ Observer estimate zi; ϵi > 0

• Assumptions:

⋄ For an initial state estimate with su�ciently

low error between zi and x, h(zi) maintains

the closed-loop state in Ωρ

⋄ There exists a time tbi such that:

|zi(t)− x(t)| ≤ ϵmi

D

Ωρ



CYBERATTACK-RESILIENT OUTPUT FEEDBACK
LEMPC

• Cyberattacks on state measurements

could impact the state estimate used by

the LEMPC

• If the estimate is su�ciently incorrect,

the closed-loop state may exit Ωρ

• Estimator properties suggest an attack

detection methodology

⋄ |zi(t) − x(t)| ≤ max{emi}, i =

1, . . . ,M

⋄ Implies |zi(t) − zj(t)| ≤ ϵmax, i, j =

1, . . . ,M , when no attack occurs

⋄ Condition can be used with

redundant estimators to attempt to

�ag falsi�ed sensor measurements

min
u(t)∈S(∆)

∫ tk+N

tk

le(x̃(τ), u(τ)) dτ

s.t. ˙̃x(t) = f(x̃(t), u(t))

x̃(tk) = z1(tk)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N )

u(t) ∈ U, ∀ t ∈ [tk, tk+N )

V (x̃(t)) ≤ ρe,1, ∀ t ∈ [tk, tk+N ),

if x̃(tk) ∈ Ωρe,1

∂V (x̃(tk))

∂x
(f(x̃(tk), u(tk)))

≤ ∂V (x̃(tk))

∂x
(f(x̃(tk), h(x(tk))))

if x̃(tk) ∈ Ωρ/Ωρe,1



CYBERATTACK-RESILIENT OUTPUT FEEDBACK
LEMPC

• Consider that at least one state

estimate is not impacted by an attacker

• If |zi(t)− zj(t)| > ϵmax, i, j = 1, . . . ,M ,

�ag an attack

• If |zi(t)− zj(t)| ≤ ϵmax, i, j = 1, . . . ,M ,

but an attack occurred:

⋄ Closed-loop state will be maintained

in Ωρ over the subsequent sampling

period under su�cient conditions

▷ Examples: su�ciently small ρe,1,

θ, and ∆

min
u(t)∈S(∆)

∫ tk+N

tk

le(x̃(τ), u(τ)) dτ

s.t. ˙̃x(t) = f(x̃(t), u(t))

x̃(tk) = z1(tk)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N )

u(t) ∈ U, ∀ t ∈ [tk, tk+N )

V (x̃(t)) ≤ ρe,1, ∀ t ∈ [tk, tk+N ),

if x̃(tk) ∈ Ωρe,1

∂V (x̃(tk))

∂x
(f(x̃(tk), u(tk)))

≤ ∂V (x̃(tk))

∂x
(f(x̃(tk), h(x(tk))))

if x̃(tk) ∈ Ωρ/Ωρe,1



MOTIVATION FOR HANDLING SIMULTANEOUS
ACTUATOR AND SENSOR ATTACKS

• Continuous stirred tank reactor (CSTR) with second-order A→ B reaction:

dCA

dt
=
F

V
(CA0 − CA)− k0e

−E
RT C2

A

dT

dt
=
F

V
(T0 − T ) +

−∆H

ρLCp
k0e

−E
RT C2

A +
Q

ρLCpV

• Control objective: Optimize process economics while maintaining the closed-loop

state in Ωρ1

⋄ Economic cost: ∫ tk+N

tk

[k0e
− E

RT (τ)CA(τ)
2]dτ

⋄ Manipulated input constraint

0.5 ≤ CA0 ≤ 7.5 kmol/m3

⋄ Deviation variables:

x1 = CA − CAs, x2 = T − Ts

⋄ Process model in input-a�ne form ẋ = f̃(x) + gu



MOTIVATION FOR HANDLING SIMULTANEOUS
ACTUATOR AND SENSOR ATTACKS

• Lyapunov-based controller: h(x) = −1.6x1 − 0.01x2 (M. Heidarinejad, J. Liu, and P. D.

Christo�des, SCL, 2012)

⋄ A quadratic Lyapunov function of the form V1(x) = xTPx with:

P =

 110.11 0

0 0.12


⋄ Stability region ρ1 = 440 (i.e., Ωρ1 = {x ∈ R2 : V (x) ≤ ρ1})
⋄ Ωρe1

⊂ Ωρ, ρe1 = 330

• LEMPC parameters: N = 10, ∆ = 0.01 h

• Process simulated with an integration step size of 10−3 h

• The LEMPC receives full state feedback with the full system state x = [x1 x2]
T

• Attack detection policy (initialized at 0.4 h when attack begins): Check if

Lyapunov function evaluated at the state measurement decreases over ∆



VARIOUS ATTACK POLICIES
(H. Oyama, D. Messina, K. K. Rangan, and H. Durand, Frontiers in Chemical Engineering, 2022)

• Actuator attack (u = 0.5 kmol/m3): Discoverable

• False sensor measurement (x1 + 0.5 kmol/m3): Not discoverable (no safety issue)

• Combined actuator and sensor attack: Discoverable

• Stealthy actuator and sensor attack (sensor measurements follow trajectory they

should have taken): Not discoverable

⋄ State moves closer to safe operating region boundary
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PREVENTING SAFETY ISSUES DURING SIMULTANEOUS
ATTACKS

• Multiple detector types can be used to aid in cornering an attacker

⋄ Examples:

▷ Redundant estimators and forcing the decrease of the Lyapunov function

across a sampling period

▷ Redundant estimators and state predictions with a redundant control law

⋄ Resilient under su�cient conditions

▷ Closed-loop state cannot leave a safe operating region in the presence of

individual or simultaneous attacks before attack detection

▷ Potentially challenging to obtain reasonable control law parameters

satisfying resilience theory

• Fundamental notion of cyberattack discoverability:

⋄ Whether it is possible to distinguish between a state trajectory coming from

attacked sensors and/or actuators and the actual

⋄ Integrated control and detection policies attempt to use the controller to force

di�erences to show themselves



EXAMPLE OF DISCOVERABILITY-INSPIRED
CYBERATTACK DETECTION

(H. Oyama et al., Digital Chemical Engineering, 2023)

• Need a strategy for detecting attacks on sensors that might �ag them even with

all sensors being compromised

• Set up expectations for measurements that would be �hard� to fake

⋄ At every sampling time, two control actions are available

⋄ Should result in non-overlapping potential sets of measured states

⋄ One of the two is randomly selected

• Random selection many times in a row

⋄ May make it challenging to predict how to not get �caught�

50%

25% 12.5%

6.25%
3.13%

1.56%
0.78% 0.39%

0.20%
8

76
5

4

3
2

1
0



IMPLEMENTING CONTROL ON QUANTUM
COMPUTERS
Quantum Computing

• Quantum computing

is a technology of

recent interest in

chemical engineering

(D.E Bernal et al., AIChE J.,

2022)

• Quantum computers

exist today of

di�erent types

• Quantum annealing

⋄ Hardware designed to solve certain optimization problems

• Gate-based computers

⋄ Considered a path toward �universal� computation



QUANTUM MECHANICS FOR QUANTUM COMPUTING
VS. CHEMISTRY

• Reminders from chemistry:

⋄ �Time-independent Schrödinger equation� (eigenvalue-eigenvector relationship)

Ĥ(x, t)ψ(x, t) = Eψ(x, t)

⋄ Time-dependent Schrödinger equation

Ĥ(x, t)ψ(x, t) = iℏ
∂ψ(x, t)

∂t

• Ĥ(x, t): Hamiltonian (total energy operator)

• Energy E

• ℏ: Reduced Planck constant

• ψ(x, t): Wavefunction of the quantum system

⋄ Contains information about position of a quantum system

⋄ Example: ψ(x, t) is the wavefunction of an electron

▷ ψ(x0, t0)
∗ψ(x0, t0)dx conveys the probability that the quantum particle will

be found in a spatial interval with width dx around x0 at time t0 (T. Engel,

Prentice Hall, 2010)



QUANTUM MECHANICS FOR QUANTUM COMPUTING
VS. CHEMISTRY

• Wavefunctions are derived from a more fundamental notion of �quantum states�

⋄ �Time-independent Schrödinger equation� (eigenvalue-eigenvector relationship)

H̄(t) |Ψ(t)⟩ = E |Ψ(t)⟩
⋄ Time-dependent Schrödinger equation

H̄(t) |Ψ(t)⟩ = iℏ
∂ |Ψ(t)⟩
∂t

• |Ψ(t)⟩ is the �quantum state�

⋄ �Dirac notation�

• Wavefunctions are derived from the quantum state in a way that makes them

particularly good for representing information about position

• Position is continuous

• Gate-based quantum computers generally stay with the binary concept of classical

computing

⋄ We only want to have 2 possible quantum states for the system

⋄ Position will not work for this



QUANTUM MECHANICS FOR QUANTUM COMPUTING
VS. CHEMISTRY

• Wavefunctions are derived from a more fundamental notion of �quantum states�

⋄ �Time-independent Schrödinger equation� (eigenvalue-eigenvector relationship)

H̄(t) |Ψ(t)⟩ = E |Ψ(t)⟩
⋄ Time-dependent Schrödinger equation

H̄(t) |Ψ(t)⟩ = iℏ
∂ |Ψ(t)⟩
∂t

• |Ψ(t)⟩ is the �quantum state�

⋄ �Dirac notation�

• Wavefunctions are derived from the quantum state in a way that makes them

particularly good for representing information about position

• Position is continuous

• Gate-based quantum computers generally stay with the binary concept of classical

computing

⋄ Wavefunctions are not used in quantum computing

⋄ Two possible quantum states: |0⟩ and |1⟩ (regardless of actual implementation)



CONCEPTUALIZING QUANTUM CIRCUITS

• Each unit of a chemical plant changes

the state of a process stream

⋄ Symbols and labeling for process

units create meaning for chemical

engineers regarding the expected

state changes

• Each block (�gate�) in a quantum

circuit changes the state of a quantum

system

⋄ Symbols and labeling for the

gates create meaning regarding the

expected state changes

⋄ Example: H gate puts a qubit

in an equal superposition of two

states



QFT-BASED ADDITION
(Ruiz-Perez, L., Garcia-Escartin, J.C., Quantum Information Processing, 2017)

• QFT-based addition: Add two integers a and b (S. Anagolum, Github)

• Binary representations of both numbers are translated to qubit states

• Quantum gates are applied (including those in the inverse QFT, QFT†) to obtain

�nal qubit states representative of the bits of the sum



QUANTUM COMPUTING-IMPLEMENTED CONTROL
EXAMPLE
Motivation

(K. K. Rangan et al., DYCOPS, 2022; K. Nieman, K. K. Rangan, and H. Durand, IECR, 2022)

Controller Dynamic
ProcessActuator

Input

Measurement

State

• Today's quantum computers are noisy

⋄ Can cause results of a series of gates to be non-deterministic in practice even if

it should be deterministic in theory

• If control was implemented on today's quantum computers, noise could make

applied inputs non-deterministic for deterministic process behavior

⋄ Raises question of when control could be implemented on quantum computers

• Initial study of these e�ects: a linear dynamic process, ẋ = x+ u, classically

stabilized using the control law u = −2x



QUANTUM COMPUTING-IMPLEMENTED CONTROL
EXAMPLE
Noise Model

(Garcia-Escartin, J.C., Chamorro-Posada, P., arXiv, 2011)

0 1
:
::

• u = −2x is evaluated using a quantum simulator (qasm_simulator) accessed via

Qiskit

⋄ Use QFT-based addition to compute u = −2x from x+ x

• Quantum simulator does not inherently have noise

⋄ Required to select a noise model

⋄ Evaluated using a controlled Z gate implementation (2 H gates and CNOT

gate) as a special case of a controlled phase rotation Zk



QUANTUM COMPUTING-IMPLEMENTED CONTROL
EXAMPLE
Noise Models

• A depolarizing error parameter for qasm_simulator was selected using command

for modeling the noise from the 5-qubit quantum device, ibmq_manila, on the

qasm_simulator

⋄ The controlled Z gate was simulated with both the qasm_simulator using this

noise model from the device backend and with the depolarizing error

parameter set to a �xed value on qasm_simulator

• A depolarizing error parameter of 0.05 was determined to su�ciently approximate

the results from the simulations based on ibmq_manila



QUANTUM COMPUTING-IMPLEMENTED CONTROL
Results

• Comparison between the state trajectories (left) and input trajectories (right)

when run with 254 shots for x(0) = 7.4

⋄ Classical computer (�Classical system�),

⋄ Quantum simulator with 254 shots and no noise (�Ideal quantum system�)

⋄ Quantum simulator with 254 shots and noise (�Noisy quantum system�)

• Some deviation is observed between the noisy system and the other two, related

to the size (in binary) of the state measurement and number of shots
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QUANTUM COMPUTING-IMPLEMENTED CONTROL
Results

• Comparison between the state trajectories (left) and input trajectories (right)

when run with 1 shot for x(0) = 7.4

⋄ Classical computer (�Classical system�),

⋄ Quantum simulator with 1 shot and no noise (�Ideal quantum system�)

⋄ Quantum simulator with 1 shot and noise (�Noisy quantum system�)

• A signi�cant deviation is observed between the noisy system and the other two,

related to the size (in binary) of the state measurement and number of shots
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QUANTUM COMPUTING-IMPLEMENTED CONTROL
Results

• Comparison between the state trajectories (left) and input trajectories (right)

when run with 1 shot for x(0) = 0.74

⋄ Classical computer (�Classical system�),

⋄ Quantum simulator with 1 shot and no noise (�Ideal quantum system�)

⋄ Quantum simulator with 1 shot and noise (�Noisy quantum system�)

• A signi�cant deviation is observed between the noisy system and the other two as

a result of the small number of shots
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QUANTUM COMPUTING-IMPLEMENTED CONTROL
Results

• Comparison between the state trajectories (left) and input trajectories (right)

when run with 254 shots for x(0) = 0.74

⋄ Quantum simulator with 254 shots and noise (�Noisy quantum system�)

• No deviation is observed between the noisy system and the other two as a result

of the number of shots

• Should we put controllers on quantum computers?

⋄ Trying algorithms and evaluating theory to show bene�ts/limitations
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ADVANCED CONTROL AND QUANTUM COMPUTATION

• Rigorous theory for LEMPC makes

it attractive for considering the

implications of non-deterministic

inputs on stability guarantees

⋄ Initial investigations of closed-

loop stability of quantum

computing-implemented inputs

should focus on simple quantum

computing algorithms

Table 1: LEMPC solution lookup table

State Measurement Control Action

0000 1111

0001 1110

0010 1010

...
...

• Consider LEMPC solutions in a look-up table

⋄ For relating to quantum computing, must express state measurements and

inputs in binary

⋄ Requires quantization of state measurements for LEMPC

⋄ Also quantize control actions output by LEMPC



SEARCHING AN LEMPC LOOKUP TABLE VIA
MODIFIED GROVER'S SEARCH

• Grover's search algorithm is a

quantum computing algorithm for

searching an unsorted list (Yanofsky

and Mannucci,Cambridge University Press, 2008)

• A modi�ed version of Grover's

algorithm could be used to search

the LEMPC lookup table

⋄ Not e�cient for solving this

problem

⋄ Show how non-deterministic

inputs can be generated by a

quantum computing algorithm

tied to LEMPC

• Modi�ed Grover's algorithm implementation strategy:

⋄ Use a series of controlled Grover blocks to represent the state/input pairings

⋄ Measurements return the �correct� input with probability λ



IMPLICATIONS FOR CLOSED-LOOP STABILITY

• Probability of obtaining the expected control action from Grover's algorithm: λ

• Consider x(t) and x̄(t) ∈ Ωρe

⋄ Control action computed by the LEMPC on a classical computer would

maintain x(tk) and x̄(tk) in Ωρ for t ∈ [tk, tk+1)

⋄ The modi�ed Grover algorithm would return the same control action as the

classical computer with probability λ

⋄ Conclusion:

▷ P(x(t), x̄(t) ∈ Ωρ∀ t ∈ [tk, tk+1)) ≥ λ

• Consider x(t) and x̄(t) ∈ Ωρ/Ωρe

⋄ Control action computed by the LEMPC on a classical computer would

maintain x(tk) and x̄(tk) in Ωρ for t ∈ [tk, tk+1)

⋄ The modi�ed Grover algorithm would return the same control action as the

classical computer with probability λ

⋄ Conclusion:

▷ P(x(t), x̄(t) ∈ Ωρ∀ t ∈ [tk, tk+1)) ≥ λ



CONCLUSIONS

• Next-generation manufacturing values �exibility and pro�tability

⋄ Facilitated by automation advances such as economic model predictive control

⋄ Flexible and pro�table systems may not be secure

▷ Attacks on control systems may undermine process safety

• Integrated detection and control policies geared toward nonlinear systems have

potential to enable attacks of various types to be detected before causing safety

issues

⋄ Requires su�cient control-theoretic conditions

⋄ May require at least some sensors to be secure

▷ Handling attacks after detection likely requires some actuators to be secure

• Fundamental notions of cyberattack-resilience and discoverability for nonlinear

systems provide insights into potential future directions for securing controllers

• Quantum computing provides another interesting potential direction for the

future of next-generation manufacturing

⋄ Control theory and practice require further exploration to determine if bene�t

exists for quantum computing-implemented control
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